Optimization of Heavy Chain and Light Chain Signal Peptides for High Level Expression of Therapeutic Antibodies in CHO Cells

نویسندگان

  • Ryan Haryadi
  • Steven Ho
  • Yee Jiun Kok
  • Helen X. Pu
  • Lu Zheng
  • Natasha A. Pereira
  • Bin Li
  • Xuezhi Bi
  • Lin-Tang Goh
  • Yuansheng Yang
  • Zhiwei Song
چکیده

Translocation of a nascent protein from the cytosol into the ER mediated by its signal peptide is a critical step in protein secretion. The aim of this work was to develop a platform technology to optimize the signal peptides for high level production of therapeutic antibodies in CHO cells. A database of signal peptides from a large number of human immunoglobulin (Ig) heavy chain (HC) and kappa light chain (LC) was generated. Most of the HC signal peptides contain 19 amino acids which can be divided into three domains and the LC signal peptides contain 22 amino acids. The signal peptides were then clustered according to sequence similarity. Based on the clustering, 8 HC and 2 LC signal peptides were analyzed for their impacts on the production of 5-top selling antibody therapeutics, namely, Herceptin, Avastin, Remicade, Rituxan, and Humira. The best HC and LC signal peptides for producing these 5 antibodies were identified. The optimized signal peptides for Rituxan is 2-fold better compared to its native signal peptides which are available in the public database. Substitution of a single amino acid in the optimized HC signal peptide for Avastin reduced its production significantly. Mass spectrometry analyses revealed that all optimized signal peptides are accurately removed in the mature antibodies. The results presented in this report are particularly important for the production of these 5 antibodies as biosimilar drugs. They also have the potential to be the best signal peptides for the production of new antibodies in CHO cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

انتقال سازه بیانی حاوی ژن‌های کایمریک IgG1 و Fv1 به رده سلولی تخمدان هامستر در بیان اینفلیکسیماب در سیستم بطری ‌های غلطان

Background: Infeliximab is a form of chimeric antibody which neutralizes the most important inflammatory cytokine, TNF-a, in inflammatory disorders. The aim of current study was to pilot expression of chimeric infliximab in Chinese Hamster ovary (CHO) cells. Methods: In this research study, pVITRO2-neo-mcs vector that consist of infliximab light chain and heavy chain was used to transform in...

متن کامل

Compatibility of B-Sheets with Epitopes Predicted by Immunoinformatic in Human IgG

Background & Aims: Antibodies, well-known as immunoglobulins (Igs), are produced by B lymphocytes and specifically defend against pathogens. Igs are glycoproteins and have high diagnostic value in several diseases including infections (1). Igs are composed of light and heavy chains (2, 3). Each chain is comprised of about 110-120 amino acid residues which create immunoglobulin folds named domai...

متن کامل

Cloning and Expression of the Variable Regions of Anti-EGFR Monoclonal Antibody in E. coli for Production of a Single Chain Antibody

Background:Epidermal growth factor receptor (EGFR) overexpression is a characteristic of several malignancies and could be considered as an excellent target for designing specific inhibitors such as anti-EGFR monoclonal antibodies for cancer therapy. Drawbacks exerted by large sizes of full-length antibodies have lead to the development of single chain antibodies, which benefit from having smal...

متن کامل

Expression of antibodies using single open reading frame (sORF) vector design

Efficient production of large quantities of therapeutic antibodies is becoming a major goal of the pharmaceutical industry. We developed a proprietary expression system using a polyprotein precursor-based approach to antibody expression in mammalian cells. In this approach, the coding regions for heavy and light chains are included within a single open reading frame (sORF) separated by an in-fr...

متن کامل

Retroviral Transduction of Fluonanobody and the Variable Domain of Camelid Heavy-Chain Antibodies to Chicken Embryonic Cells

Background: Single domain antibodies from camel heavy chain antibodies (VHH or nanobody), are advantages due to higher solubility, stability, high homology with human antibody, lower immunogenicity and low molecular weight. These criteria make them candidates for production of engineered antibody fragments particularly in transgenic animals. Objective: To study the development of transgenic ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015